1259 - Goldbach`s Conjecture
Every even integer, greater than 2, can be expressed as the sum of two primes [1].Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input |
Output for Sample Input |
264 | Case 1: 1Case 2: 1 |
Note
- An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
题目类型:素数筛+枚举
算法分析:使用Euler筛将素数表预先打出,然后对于每个读入的n,枚举小于等于n/2的素数,满足条件的cnt自加即可
- « 上一篇:lightoj1255
- lightoj1266:下一篇 »