A Ducci sequence is a sequence of n-tuples of integers. Given an n-tuple of integers (a1, a2, · · · , an), the next n-tuple in the sequence is formed by taking the absolute differences of neighboring integers:
(a1, a2, · · · , an) → (|a1 − a2|, |a2 − a3|, · · · , |an − a1|)
Ducci sequences either reach a tuple of zeros or fall into a periodic loop. For example, the 4-tuple sequence starting with 8,11,2,7 takes 5 steps to reach the zeros tuple:
(8, 11, 2, 7) → (3, 9, 5, 1) → (6, 4, 4, 2) → (2, 0, 2, 4) → (2, 2, 2, 2) → (0, 0, 0, 0).
The 5-tuple sequence starting with 4,2,0,2,0 enters a loop after 2 steps:
(4, 2, 0, 2, 0) → (2, 2, 2, 2, 4) → (0,0,0,2,2) → (0, 0, 2, 0, 2) → (0, 2, 2, 2, 2) → (2, 0, 0, 0, 2) → (2, 0, 0, 2, 0) → (2, 0, 2, 2, 2) → (2, 2, 0, 0, 0) → (0, 2, 0, 0, 2) → (2, 2, 0, 2, 2) → (0, 2, 2, 0, 0) → (2, 0, 2, 0, 0) → (2, 2, 2, 0, 2) → (0, 0, 2, 2, 0) → (0, 2, 0, 2, 0) → (2, 2, 2, 2, 0) → (0,0,0,2,2) → · · ·
Given an n-tuple of integers, write a program to decide if the sequence is reaching to a zeros tuple or a periodic loop.
Input
Your program is to read the input from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case starts with a line containing an integer n (3 ≤ n ≤ 15), which represents the size of a tuple in the Ducci sequences. In the following line, n integers are given which represents the n-tuple of integers. The range of integers are from 0 to 1,000. You may assume that the maximum number of steps of a Ducci sequence reaching zeros tuple or making a loop does not exceed 1,000.
Output
Your program is to write to standard output. Print exactly one line for each test case. Print ‘LOOP’ if the Ducci sequence falls into a periodic loop, print ‘ZERO’ if the Ducci sequence reaches to a zeros tuple.
Sample Input
4
4
8 11 2 7
5
4 2 0 2 0
7
0 0 0 0 0 0 0
6
1 2 3 1 2 3
Sample Output
ZERO
LOOP
ZERO
LOOP
题目类型:暴力枚举
算法分析:由于最多循环1000次就会出现循环节,所以可以枚举1000次并进行判断
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
/************************************************** filename :b.cpp author :maksyuki created time :2018/1/22 19:45:31 last modified :2018/1/22 19:55:25 file location :C:\Users\abcd\Desktop\TheEternalPoet ***************************************************/ #pragma comment(linker, "/STACK:102400000,102400000") #include <set> #include <bitset> #include <list> #include <map> #include <stack> #include <queue> #include <deque> #include <string> #include <vector> #include <ios> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <algorithm> #include <utility> #include <complex> #include <numeric> #include <functional> #include <cmath> #include <ctime> #include <climits> #include <cstdarg> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <cassert> using namespace std; #define CFF freopen ("in", "r", stdin) #define CFO freopen ("out", "w", stdout) #define CPPFF ifstream cin ("in") #define CPPFO ofstream cout ("out") #define DB(ccc) cout << #ccc << " = " << ccc << endl #define DBT printf("time used: %.2lfs\n", (double) clock() / CLOCKS_PER_SEC) #define PB push_back #define MP(A, B) make_pair(A, B) typedef long long LL; typedef unsigned long long ULL; typedef double DB; typedef pair <int, int> PII; typedef pair <int, bool> PIB; const int INF = 0x7F7F7F7F; const int MOD = 1e9 + 7; const double EPS = 1e-10; const double PI = 2 * acos (0.0); const int maxn = 1e5 + 6666; int aa[maxn]; int main() { #ifdef LOCAL CFF; //CFO; #endif int t; scanf("%d", &t); while(t--) { int n; scanf("%d", &n); for(int i = 1; i <= n; i++) scanf(" %d", &aa[i]); int tt; bool is_valid = false; for(int i = 1; i <= 1006; i++) { tt = aa[1]; for(int j = 1; j <= n - 1; j++) aa[j] = abs(aa[j] - aa[j+1]); aa[n] = abs(aa[n] - tt); bool is_zero = true; for(int j = 1; j <= n; j++) if(aa[j]) { is_zero = false; break; } if(is_zero) { is_valid = true; break; } } if(is_valid) puts("ZERO"); else puts("LOOP"); } return 0; } |