poj2112

maksyuki 发表于 oj 分类,标签: ,
0

Optimal Milking

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

Source

USACO 2003 U S Open

 

题目类型:最大流

算法分析:这里将每天能够挤奶的奶牛数看作是网络流的最大流,建图时从源点向每个奶牛连一条容量为1的有向边,从每个挤奶器向汇点连一条容量为M的有向边,然后二分枚举最大路程maxv。若图中存在从某个奶牛到某个挤奶器的距离小于等于maxv,则在其之间连一条容量为1的有向边,最后依据求出的最大流的情况选择二分的方向