poj3641

maksyuki 发表于 oj 分类,标签:
0

Pseudoprime numbers

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.) Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no

no

yes

no

yes

yes

Source

Waterloo Local Contest, 2007.9.23

 

题目类型:伪素数测试

算法分析:按照以a为基的伪素数的定义判断即可,也就是判断是否p为合数,且对于任意的正整数a,满足a ^ p = a (mod p)