poj1284

maksyuki 发表于 oj 分类,标签:
0

Primitive Roots

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23

31

79

Sample Output

10

8

24

Source

贾怡@pku

 

题目类型:欧拉函数

算法分析:由于素数p有phi(p - 1)个原根,所以直接计算在p - 1处的欧拉函数值即可