Chinese remainder theorem again
Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1 2 3
0 0
Sample Output
5
Author
lcy
Source
题目类型:简单同余
算法分析:题目要求的是N = (Mi - a) mod Mi中最小的N,由前面的式子可以推得(N + a) = 0 mod Mi,即求解的是所有Mi的最小公倍数K = (N + a),然后K – a就是N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
#include <set> #include <bitset> #include <list> #include <map> #include <stack> #include <queue> #include <deque> #include <string> #include <vector> #include <ios> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <algorithm> #include <utility> #include <complex> #include <numeric> #include <functional> #include <cmath> #include <ctime> #include <climits> #include <cstdarg> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <cassert> #define lson rt << 1, l, m #define rson rt << 1 | 1, m + 1, r using namespace std; const int INF = 0x7FFFFFFF; const double EPS = 1e-10; const double PI = 2 * acos (0.0); const int MOD = 7; const int maxn = 10 + 66; long long gcd (int a, int b) { if (b == 0) return a; return gcd (b, a % b); } int main() { // ifstream cin ("aaa.txt"); long long n, a; while (cin >> n >> a) { if (n == 0 && a == 0) break; long long i, ans = 1, temp; for (i = 0; i < n; i++) { cin >> temp; ans = ans / gcd (max (ans, temp), min (ans, temp)) * temp; } cout << ans - a << endl; } return 0; } |
- « 上一篇:hdu1754
- hdu1792:下一篇 »