Father Christmas flymouse
After retirement as contestant from WHU ACM Team, flymouse volunteered to do the odds and ends such as cleaning out the computer lab for training as extension of his contribution to the team. When Christmas came, flymouse played Father Christmas to give gifts to the team members. The team members lived in distinct rooms in different buildings on the campus. To save vigor, flymouse decided to choose only one of those rooms as the place to start his journey and follow directed paths to visit one room after another and give out gifts en passant until he could reach no more unvisited rooms.
During the days on the team, flymouse left different impressions on his teammates at the time. Some of them, like LiZhiXu, with whom flymouse shared a lot of candies, would surely sing flymouse’s deeds of generosity, while the others, like snoopy, would never let flymouse off for his idleness. flymouse was able to use some kind of comfort index to quantitize whether better or worse he would feel after hearing the words from the gift recipients (positive for better and negative for worse). When arriving at a room, he chould choose to enter and give out a gift and hear the words from the recipient, or bypass the room in silence. He could arrive at a room more than once but never enter it a second time. He wanted to maximize the the sum of comfort indices accumulated along his journey.
Input
The input contains several test cases. Each test cases start with two integers N and M not exceeding 30 000 and 150 000 respectively on the first line, meaning that there were N team members living in N distinct rooms and M direct paths. On the next N lines there are N integers, one on each line, the i-th of which gives the comfort index of the words of the team member in the i-th room. Then follow M lines, each containing two integers i and j indicating a directed path from the i-th room to the j-th one. Process to end of file.
Output
For each test case, output one line with only the maximized sum of accumulated comfort indices.
Sample Input
2 2
14
21
0 1
1 0
Sample Output
35
Hint
32-bit signed integer type is capable of doing all arithmetic.
Source
POJ Monthly--2006.12.31, Sempr
题目类型:有向图强连通分量+缩点+DP
算法分析:易知在同一个强连通分量中的点的权值等于所有正值点的点权之和。缩点后,在构建出来的图上DP,dp[i]表示i点处的最大值,初始化为缩点后该点的点权。状态转移方程为dp[i] = max (dp[i], max (vval[i] + dp[j])), j至i有一条有向边,vval[i]为i点处的点权。最后使用拓扑序转移计算即可,注意若点权为负值,由于可以不进去,所以缩点后点权可以赋值为0!!!dp[i]要使用long long!!!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
/************************************************* Author :supermaker Created Time :2016/1/24 18:56:38 File Location :C:\Users\abcd\Desktop\TheEternalPoet **************************************************/ #pragma comment(linker, "/STACK:102400000,102400000") #include <set> #include <bitset> #include <list> #include <map> #include <stack> #include <queue> #include <deque> #include <string> #include <vector> #include <ios> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <algorithm> #include <utility> #include <complex> #include <numeric> #include <functional> #include <cmath> #include <ctime> #include <climits> #include <cstdarg> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <cassert> using namespace std; #define CFF freopen ("aaa.txt", "r", stdin) #define CPPFF ifstream cin ("aaa.txt") #define DB(ccc) cout << #ccc << " = " << ccc << endl #define PB push_back #define MP(A, B) make_pair(A, B) typedef long long LL; typedef unsigned long long ULL; typedef double DB; typedef pair <int, int> PII; typedef pair <int, bool> PIB; const int INF = 0x7F7F7F7F; const int MOD = 1e9 + 7; const double EPS = 1e-10; const double PI = 2 * acos (0.0); const int maxn = 30000 + 66; int dfn[maxn], low[maxn], belong[maxn], val[maxn], vval[maxn], indeg[maxn]; LL dp[maxn]; int n, m, id, tot; bool instack[maxn]; vector <int> g[maxn], gg[maxn]; stack <int> sta; void dfs (int u) { dfn[u] = low[u] = ++id; sta.push (u); instack[u] = true; for (int i = 0; i < g[u].size (); i++) { int v = g[u][i]; if (!dfn[v]) { dfs (v); low[u] = min (low[u], low[v]); } else if (instack[v]) low[u] = min (low[u], dfn[v]); } if (low[u] == dfn[u]) { tot++; int tt; do { tt = sta.top (); sta.pop (); instack[tt] = false; belong[tt] = tot; if (val[tt] > 0) vval[tot] += val[tt]; } while (!sta.empty () && tt != u); } } void SS () { memset (dfn, 0, sizeof (dfn)); memset (low, 0, sizeof (low)); memset (instack, false, sizeof (instack)); memset (vval, 0, sizeof (vval)); tot = id = 0; while (!sta.empty ()) sta.pop (); for (int i = 1; i <= n; i++) if (!dfn[i]) dfs (i); } int main() { //CFF; //CPPFF; while (scanf ("%d%d", &n, &m) != EOF) { for (int i = 1; i <= n; i++) scanf ("%d", &val[i]); for (int i = 0; i < maxn; i++) g[i].clear (); for (int i = 1; i <= m; i++) { int u, v; scanf ("%d%d", &u, &v); u++, v++; g[u].push_back (v); } SS (); memset (indeg, 0, sizeof (indeg)); for (int i = 0; i < maxn; i++) gg[i].clear (); for (int u = 1; u <= n; u++) for (int i = 0; i < g[u].size (); i++) { int v = g[u][i]; if (belong[u] != belong[v]) { indeg[belong[v]]++; gg[belong[u]].push_back (belong[v]); } } queue <int> qu; for (int i = 1; i <= tot; i++) { if (!indeg[i]) qu.push (i); dp[i] = vval[i]; } while (!qu.empty ()) { int tt = qu.front (); qu.pop (); for (int i = 0; i < gg[tt].size (); i++) { int v = gg[tt][i]; indeg[v]--; dp[v] = max (dp[v], vval[v] + dp[tt]); if (!indeg[v]) qu.push (v); } } LL res = -INF; for (int i = 1; i <= tot; i++) res = max (res, dp[i]); printf ("%lld\n", res); } return 0; } |