Jacobi symbol
Problem Description
Consider a prime number p and an integer a !≡ 0 (mod p). Then a is called a quadratic residue mod p if there is an integer x such that 阅读全文 »
Problem Description
Consider a prime number p and an integer a !≡ 0 (mod p). Then a is called a quadratic residue mod p if there is an integer x such that 阅读全文 »
Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input 阅读全文 »
Problem Description
Given a positive integer N, your task is to calculate the sum 阅读全文 »
Problem Description
Now Sailormoon girls want to tell you a ancient idiom story 阅读全文 »
Problem Description
当太阳的光辉逐渐被月亮遮蔽,世界失去了光明,大地迎来最黑暗的时刻。。。。在这样的时刻,人们却异常兴奋——我们能在有生之年看到500年一遇的世界奇观,那是多么幸福的事儿啊~~ 阅读全文 »
Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
Input
There are multiple test cases.
For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.
The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
Sample Input
4 4
4 4 10 7
2 13 9 11
5 7 8 20
13 20 8 2
4
1 1 4 4
1 1 3 3
1 3 3 4
1 1 1 1
Sample Output
20 no
13 no
20 yes
4 yes
Source
2009 Multi-University Training Contest 9 - Host by HIT
题目类型:二维RMQ
算法分析:直接使用二维RMQ计算即可
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
#include <set> #include <bitset> #include <list> #include <map> #include <stack> #include <queue> #include <deque> #include <string> #include <vector> #include <ios> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <algorithm> #include <utility> #include <complex> #include <numeric> #include <functional> #include <cmath> #include <ctime> #include <climits> #include <cstdarg> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <cassert> #define lson rt << 1, l, m #define rson rt << 1 | 1, m + 1, r using namespace std; const int INF = 0x7FFFFFFF; const int MOD = 1000000000 + 7; const double EPS = 1e-10; const double PI = 2 * acos (0.0); const int maxn = 366 + 6; int ans[maxn][maxn]; int dpmax[maxn][maxn][9][9];//最大值 void RMQ_ST (int n, int m) { for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) dpmax[i][j][0][0] = ans[i][j]; int mx = log(double(n)) / log(2.0); int my = log(double(m)) / log(2.0); for (int i = 0; i <= mx; i++) { for (int j = 0; j <= my; j++) { if (i == 0 && j ==0) continue; for (int p = 1; p + (1 << i) - 1 <= n; p++) { for(int q = 1; q + (1 << j) - 1 <= m; q++) { if (i == 0)//y轴二分 dpmax[p][q][i][j] = max (dpmax[p][q][i][j-1], dpmax[p][q+(1<<(j-1))][i][j-1]); else//x轴二分 dpmax[p][q][i][j] = max (dpmax[p][q][i-1][j], dpmax[p+(1<<(i-1))][q][i-1][j]); } } } } } int RMQ_Findmax (int x1, int y1, int x2, int y2) { int kx = log(double(x2-x1+1)) / log(2.0); int ky = log(double(y2-y1+1)) / log(2.0); int m1 = dpmax[x1][y1][kx][ky]; int m2 = dpmax[x2-(1<<kx)+1][y1][kx][ky]; int m3 = dpmax[x1][y2-(1<<ky)+1][kx][ky]; int m4 = dpmax[x2-(1<<kx)+1][y2-(1<<ky)+1][kx][ky]; return max (max(m1, m2), max (m3, m4)); } int main() { // freopen ("aaa.txt", "r", stdin); int x1, x2, y1, y2, m, n, q; while (scanf ("%d%d", &n, &m) != EOF) { for (int i = 1; i<= n; i++) for (int j = 1; j <= m; j++) scanf ("%d", &ans[i][j]); RMQ_ST (n, m); scanf ("%d", &q); for (int i = 1; i <= q; i++) { scanf ("%d%d%d%d", &x1, &y1, &x2, &y2); int temp = RMQ_Findmax (x1, y1, x2, y2); printf ("%d ", temp); if (ans[x1][y1] == temp || ans[x2][y1] == temp || ans[x1][y2] == temp || ans[x2][y2] == temp) puts ("yes"); else puts ("no"); } } return 0; } |
Problem Description
Yifenfei very like play a number game in the n*n Matrix. A positive integer number is put in each area of the Matrix. 阅读全文 »
Problem Description
The Sky is Sprite.
The Birds is Fly in the Sky.
The Wind is Wonderful.
Blew Throw the Trees 阅读全文 »
Problem Description
Homer: Marge, I just figured out a way to discover some of the talents we weren’t aware we had.
Marge: Yeah, what is it?
Homer: Take me for example. I want to find out if I have 阅读全文 »